来源:Leetcode
原帖:http://oj.leetcode.com/problems/3sum/
题目:
Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
Elements in a triplet (a,b,c) must be in non-descending order. (ie, a <= b <= c)
The solution set must not contain duplicate triplets. For example, given array S = {-1 0 1 2 -1 -4},
A solution set is: (-1, 0, 1), (-1, -1, 2)
代码:
原帖:http://oj.leetcode.com/problems/3sum/
题目:
Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
Elements in a triplet (a,b,c) must be in non-descending order. (ie, a <= b <= c)
The solution set must not contain duplicate triplets. For example, given array S = {-1 0 1 2 -1 -4},
A solution set is: (-1, 0, 1), (-1, -1, 2)
代码:
class Solution {
public:
vector<vector<int> > threeSum(vector<int> &num) {
vector<vector<int>> res;
sort(num.begin(), num.end());
int N = num.size();
for (int i = 0; i < N - 2 && num[i] <= 0; ++i) {
if (i != 0 && num[i] == num[i - 1]) continue;
int twosum = 0 - num[i]; // any value
int l = i + 1, r = N - 1;
while (l < r) {
if (l != i + 1 && num[l] == num[l - 1]) { // avoid duplicates
l++; continue;
}
if (r != N - 1 && num[r] == num[r + 1]) { // avoid duplicates
r--; continue;
}
int sum = num[l] + num[r];
if (sum < twosum) {
l++;
} else if (sum > twosum) {
r--;
} else {
vector<int> three = {num[i], num[l], num[r]}; // c++11 new feature initialization list
res.push_back(three);
l++; r--; // do not forget update
}
}
}
return res;
}
};
No comments:
Post a Comment