来源:Leetcode
原帖:http://oj.leetcode.com/problems/4sum/
题目:
Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target Find all unique quadruplets in the array which gives the sum of target.
Note:
Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a <= b <= c <= d)
The solution set must not contain duplicate quadruplets.
For example, given array S = {1 0 -1 0 -2 2}, and target = 0.
A solution set is:
(-1, 0, 0, 1)
(-2, -1, 1, 2)
(-2, 0, 0, 2)
代码:
1] no optimization, two pointers. O(n^3)
原帖:http://oj.leetcode.com/problems/4sum/
题目:
Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target Find all unique quadruplets in the array which gives the sum of target.
Note:
Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a <= b <= c <= d)
The solution set must not contain duplicate quadruplets.
For example, given array S = {1 0 -1 0 -2 2}, and target = 0.
A solution set is:
(-1, 0, 0, 1)
(-2, -1, 1, 2)
(-2, 0, 0, 2)
代码:
1] no optimization, two pointers. O(n^3)
class Solution {
public:
vector<vector<int> > fourSum(vector<int> &num, int target) {
int N = num.size();
vector<vector<int> > res;
if (N < 4) return res;
sort(num.begin(), num.end());
for (int i = 0; i < N - 3; ++i) {
if (i > 0 && num[i] == num[i - 1]) continue;
for (int j = i + 1; j < N - 2; ++j) {
if (j > i + 1 && num[j] == num[j - 1]) continue;
int twosum = target - num[i] - num[j];
int l = j + 1, r = N - 1;
while (l < r) {
if (l > j + 1 && num[l] == num[l - 1]) { // avoid duplicates
l++;
continue;
}
if (r < N - 1 && num[r] == num[r + 1]) { // avoid duplicates
r--;
continue;
}
int sum = num[l] + num[r];
if (sum == twosum) {
vector<int> four = {num[i], num[j], num[l], num[r]};
res.push_back(four);
l++; r--;
} else if (sum < twosum) {
l++;
} else {
r--;
}
}
}
}
return res;
}
};
No comments:
Post a Comment