来源:Leetcode
原帖:http://oj.leetcode.com/problems/search-for-a-range/
题目:
Given a sorted array of integers, find the starting and ending position of a given target value. Your algorithm's runtime complexity must be in the order of O(log n). If the target is not found in the array, return [-1, -1].
For example,
Given [5, 7, 7, 8, 8, 10] and target value 8, return [3, 4].
Solution: It takes O(lgN) to find both the lower-bound and upper-bound.
代码:
原帖:http://oj.leetcode.com/problems/search-for-a-range/
题目:
Given a sorted array of integers, find the starting and ending position of a given target value. Your algorithm's runtime complexity must be in the order of O(log n). If the target is not found in the array, return [-1, -1].
For example,
Given [5, 7, 7, 8, 8, 10] and target value 8, return [3, 4].
Solution: It takes O(lgN) to find both the lower-bound and upper-bound.
代码:
class Solution {
public:
vector<int> searchRange(int A[], int n, int target) {
int start, end, mid;
vector<int> bound(2, 0);
// search for left bound
start = 0; end = n - 1;
while (start + 1 < end) {
mid = start + (end - start) / 2;
if (A[mid] >= target) {
end = mid;
} else {
start = mid;
}
}
if (A[start] == target) {
bound[0] = start;
} else if (A[end] == target) {
bound[0] = end;
} else {
return {-1, -1};
}
// search for right bound
start = 0; end = n - 1;
while (start + 1 < end) {
mid = start + (end - start) / 2;
if (A[mid] == target) {
start = mid;
} else if (A[mid] < target) {
start = mid;
} else {
end = mid;
}
}
if (A[end] == target) {
bound[1] = end;
} else if (A[start] == target) {
bound[1] = start;
} else {
return {-1,-1};
}
return bound;
}
};
No comments:
Post a Comment