来源:cc150, itint5
原帖:http://www.itint5.com/oj/#34
题目:
有n块积木,每块积木有体积vol和重量weight两个属性,用二元组(vol, weight)表示。积木需要搭成竖直的塔状,上面积木的体积和重量必须都比它下面的积木小。问最多可以搭多少个积木。样例:
有7个积木boxes:
[(65, 100), (70, 150), (56, 90), (75, 190), (60, 95), (68, 110), (80, 12)]
最多可以搭6个积木,从上到下分别为:
(56, 90), (60, 95), (65, 100), (68, 110), (70, 150), (75, 190)
所以函数应该返回6。
题目来源:CRACKING THE CODING INTERVIEW 9.7
Solution: 先按照vol进行排序,题目就变成了根据weight寻找最长严格递增子序列。
代码:
原帖:http://www.itint5.com/oj/#34
题目:
有n块积木,每块积木有体积vol和重量weight两个属性,用二元组(vol, weight)表示。积木需要搭成竖直的塔状,上面积木的体积和重量必须都比它下面的积木小。问最多可以搭多少个积木。样例:
有7个积木boxes:
[(65, 100), (70, 150), (56, 90), (75, 190), (60, 95), (68, 110), (80, 12)]
最多可以搭6个积木,从上到下分别为:
(56, 90), (60, 95), (65, 100), (68, 110), (70, 150), (75, 190)
所以函数应该返回6。
题目来源:CRACKING THE CODING INTERVIEW 9.7
Solution: 先按照vol进行排序,题目就变成了根据weight寻找最长严格递增子序列。
代码:
/*积木的定义(请不要在代码中定义该结构)
struct Box {
int vol, weight;
};*/
int mycompare(const Box& a, const Box& b) {
if (a.vol == b.vol)
return a.weight < b.weight;
return a.vol < b.vol;
}
int maxBoxes(vector<Box> &boxes) {
int N = boxes.size();
if (N == 0) return 0;
sort(boxes.begin(), boxes.end(), mycompare);
vector<int> dp(N, 0);
int res = 1;
for (int i = 0; i < N; ++i) {
dp[i] = 1;
for (int j = 0; j < i; ++j)
if (boxes[i].vol > boxes[j].vol && boxes[i].weight > boxes[j].weight)
dp[i] = max(dp[i], dp[j] + 1);
res = max(res, dp[i]);
}
return res;
}
No comments:
Post a Comment