Monday, May 18, 2015

Scramble String

来源:Leetcode

原帖:http://oj.leetcode.com/problems/scramble-string/

题目:
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
       great
      /     \
     gr    eat
    / \    /  \
   g   r  e   at
              / \
             a   t
To scramble the string, we may choose any non-leaf node and swap its two children. For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat".
       rgeat
      /     \
     rg    eat
    / \    /  \
   r   g  e   at
              / \
             a   t
We say that "rgeat" is a scrambled string of "great". Similarly, if we continue to swap the children of nodes "eat" and "at", it produces a scrambled string "rgtae".
      rgtae
      /    \
     rg    tae
    / \    /  \
   r   g  ta  e
          / \
         t   a
We say that "rgtae" is a scrambled string of "great". Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
Solution: 1. 3-dimensional dp.
              'dp[k][i][j] == true' means string s1(start from i, length k) is a scrambled string of
              string s2(start from j, length k).

代码:
 class Solution {  
 public:  
   bool isScramble(string s1, string s2) {  
     if(s1.size() != s2.size()) return false;  
     int N = s1.size();  
     bool dp[N + 1][N][N];  
     for (int k = 1; k <= N; ++k) { // string length k  
       for (int i = 0; i <= N-k; ++i) { // start i  
         for (int j = 0; j <= N-k; ++j) { // start j   
           dp[k][i][j] = false;  
           if (k == 1)  
             dp[1][i][j] = (s1[i] == s2[j]);    
           for (int p = 1; p < k; ++p) { // 把树分成两子树,如果满足scramble,则分成的两个子树一定是scramble  
             if (dp[p][i][j] && dp[k - p][i + p][j + p]   
              || dp[p][i][j + k - p] && dp[k - p][i + p][j]) {  
               dp[k][i][j] = true;   
               break;              
             }  
           }  
         }  
       }  
     }  
     return dp[N][0][0];  
   }  
 };  


No comments:

Post a Comment