来源:Leetcode
原帖:http://oj.leetcode.com/problems/unique-paths/
题目:
A robot is located at the top-left corner of a m x n grid. The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below). How many possible unique paths are there?
Solution:
Dynamic programming. UP(i,j) = UP(i-1,j) + UP(i,j-1).
代码:
原帖:http://oj.leetcode.com/problems/unique-paths/
题目:
A robot is located at the top-left corner of a m x n grid. The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below). How many possible unique paths are there?
Solution:
Dynamic programming. UP(i,j) = UP(i-1,j) + UP(i,j-1).
代码:
class Solution {
public:
int uniquePaths(int m, int n) {
int dp[m][n];
for (int i = 0; i < m; i++) {
dp[i][0] = 1;
}
for (int j = 0; j < n; j++) {
dp[0][j] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
};
class Solution {
public:
// 滚动数组
int uniquePaths(int m, int n) {
int dp[2][n];
for (int i = 0; i < n; ++i) {
dp[0][i] = 1;
}
dp[1][0] = 1;
int row = 0;
for (int i = 1; i < m; ++i) {
row = !row;
for (int j = 1; j < n; ++j) {
dp[row][j] = dp[!row][j] + dp[row][j - 1];
}
}
return dp[row][n - 1];
}
};
class Solution {
public:
int uniquePaths(int m, int n) {
vector<int> dp(n, 1);
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
dp[j] = dp[j-1] + dp[j];
}
}
return dp[n-1];
}
};
No comments:
Post a Comment